Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Network‐based Analysis of the 1861 Hagelloch Measles Data

Identifieur interne : 001F44 ( Main/Exploration ); précédent : 001F43; suivant : 001F45

A Network‐based Analysis of the 1861 Hagelloch Measles Data

Auteurs : Chris Groendyke [États-Unis] ; David Welch [États-Unis, Nouvelle-Zélande] ; David R. Hunter [États-Unis]

Source :

RBID : ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067

English descriptors

Abstract

Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.

Url:
DOI: 10.1111/j.1541-0420.2012.01748.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
<author>
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
</author>
<author>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
</author>
<author>
<name sortKey="Hunter, David R" sort="Hunter, David R" uniqKey="Hunter D" first="David R." last="Hunter">David R. Hunter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1541-0420.2012.01748.x</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F08</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F08</idno>
<idno type="wicri:Area/Istex/Curation">001F08</idno>
<idno type="wicri:Area/Istex/Checkpoint">000655</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000655</idno>
<idno type="wicri:doubleKey">0006-341X:2012:Groendyke C:a:network:based</idno>
<idno type="wicri:Area/Main/Merge">001F68</idno>
<idno type="wicri:Area/Main/Curation">001F44</idno>
<idno type="wicri:Area/Main/Exploration">001F44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
<author>
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Current address: Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania 15108</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15108</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Current address: Department of Computer Science, University of Auckland, Auckland 1142</wicri:regionArea>
<wicri:noRegion>Auckland 1142</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hunter, David R" sort="Hunter, David R" uniqKey="Hunter D" first="David R." last="Hunter">David R. Hunter</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biometrics</title>
<title level="j" type="alt">BIOMETRICS</title>
<idno type="ISSN">0006-341X</idno>
<idno type="eISSN">1541-0420</idno>
<imprint>
<biblScope unit="vol">68</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="755">755</biblScope>
<biblScope unit="page" to="765">765</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2012-09">2012-09</date>
</imprint>
<idno type="ISSN">0006-341X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-341X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Actual outbreak</term>
<term>Actual outbreak pattern</term>
<term>Algorithm</term>
<term>Bayesian</term>
<term>Bayesian inference</term>
<term>Biometrics</term>
<term>Britton</term>
<term>Candidate models</term>
<term>Contact network</term>
<term>Contact networks</term>
<term>Contact structure</term>
<term>Containment</term>
<term>Containment strategy</term>
<term>Covariates</term>
<term>Current address</term>
<term>Data sets</term>
<term>Degree distribution</term>
<term>Development core team</term>
<term>Disease data</term>
<term>Dyad</term>
<term>Dyadic</term>
<term>Dyadic covariates</term>
<term>Dyadic dependence model</term>
<term>Edge formation</term>
<term>Electronic version</term>
<term>Epidemic</term>
<term>Epidemic curves</term>
<term>Epidemic data</term>
<term>Epidemic model</term>
<term>Epidemic models</term>
<term>Epidemic parameters</term>
<term>Epidemiology</term>
<term>Ergm</term>
<term>Ergm network structure</term>
<term>Extra parameters</term>
<term>Further discussion</term>
<term>Gender homophily</term>
<term>Graph model</term>
<term>Groendyke</term>
<term>Hagelloch</term>
<term>Hagelloch data</term>
<term>Hagelloch measles data</term>
<term>Hagelloch measles epidemic</term>
<term>House distance</term>
<term>House distance parameter</term>
<term>Independence model</term>
<term>Infectious class</term>
<term>Infectious contact</term>
<term>Infectious contacts</term>
<term>Infectious group</term>
<term>Infectious individuals</term>
<term>Infectious period</term>
<term>Infectious periods</term>
<term>Infectious state</term>
<term>Keeling</term>
<term>Many cases</term>
<term>Mcmc</term>
<term>Mcmc algorithm</term>
<term>Meaningful statements</term>
<term>Measles</term>
<term>Measles data</term>
<term>Measles outbreak</term>
<term>Model selection</term>
<term>Network analysis</term>
<term>Network model</term>
<term>Network model parameters</term>
<term>Network models</term>
<term>Network parameters</term>
<term>Network structure</term>
<term>Node</term>
<term>Outbreak</term>
<term>Parameter</term>
<term>Parameter estimates</term>
<term>Parameter values</term>
<term>Pennsylvania state university</term>
<term>Population interactions</term>
<term>Posterior</term>
<term>Posterior density</term>
<term>Posterior distribution</term>
<term>Posterior distributions</term>
<term>Present analysis</term>
<term>Previous analyses</term>
<term>Previous works</term>
<term>Random graph model</term>
<term>Random graph models</term>
<term>Random graphs</term>
<term>Reproduction number</term>
<term>Reversible jump markov chain monte carlo</term>
<term>Right panel</term>
<term>Rjmcmc algorithm</term>
<term>Same household</term>
<term>Scandinavian journal</term>
<term>School class</term>
<term>Secondary infections</term>
<term>Seir</term>
<term>Seir epidemic model</term>
<term>Social network analysis</term>
<term>Social networks</term>
<term>Software</term>
<term>Software package</term>
<term>Spatial distance</term>
<term>Standard deviations</term>
<term>Statistical inference</term>
<term>Stochastic</term>
<term>Stochastic epidemics</term>
<term>Stochastic seir epidemic model</term>
<term>Susceptible individuals</term>
<term>Total time</term>
<term>Transmission process</term>
<term>Transmission rate</term>
<term>Transmission rates</term>
<term>Transmission tree</term>
<term>Ultimate size</term>
<term>University park</term>
<term>Unknown number</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
</region>
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
<name sortKey="Hunter, David R" sort="Hunter, David R" uniqKey="Hunter D" first="David R." last="Hunter">David R. Hunter</name>
<name sortKey="Hunter, David R" sort="Hunter, David R" uniqKey="Hunter D" first="David R." last="Hunter">David R. Hunter</name>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
</country>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067
   |texte=   A Network‐based Analysis of the 1861 Hagelloch Measles Data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021